Calculate rotation angle using maximum likelihood estimation (MLE)
Source:R/x3p_MLE_angle_vec.R
x3p_MLE_angle_vec.Rd
This function calculates the rotation angle of an x3p
object using maximum likelihood estimation (MLE) with Hough transformation.
Arguments
- x3p
An
x3p
object representing a topographic scan.- ntheta
The number of bins along the theta axis used in
imager::hough_line
.- min_score_cut
A tuning parameter that sets the minimum score required for the Hough transformation.
- ifplot
A Boolean flag indicating whether to save ggplot lists in the output attributes.
- loess_span
A parameter controlling the degree of smoothing in the LOESS function.
Examples
x3p <- x3p_subsamples[[1]]
insidepoly_df <- x3p_insidepoly_df(x3p, mask_col = "#FF0000", concavity = 1.5, b = 1)
x3p_inner_nomiss_res <- df_rmtrend_x3p(insidepoly_df)
x3p_inner_impute <- x3p_impute(x3p_inner_nomiss_res,
ifout = FALSE, ifsave = FALSE, dir_name = NULL, ifplot = FALSE
)
x3p_bin <- x3p_inner_impute %>%
x3ptools::x3p_bin_stripes(
direction = "vertical",
colors = c("#b12819", "#ffffff", "#134D6B"),
freqs = c(0, 0.3, 0.7, 1)
)
x3p_bin_red <- x3ptools::x3p_extract(x3p_bin, mask_vals = "#b12819")
angle_red <- x3p_MLE_angle_vec(x3p_bin_red, min_score_cut = 5, ifplot = TRUE)
attr(angle_red, "nfline_plot")
attr(angle_red, "MLE_loess_plot")
#> `geom_smooth()` using formula = 'y ~ x'